Abstract
Method: We calculated the number needed to vaccinate (NNTV) from a large Israeli field study to prevent one death. We accessed the Adverse Drug Reactions (ADR) database of the European Medicines Agency and of the Dutch National Register (lareb.nl) to extract the number of cases reporting severe side effects and the number of cases with fatal side effects.
Result: The NNTV is between 200–700 to prevent one case of COVID-19 for the mRNA vaccine marketed by Pfizer, while the NNTV to prevent one death is between 9000 and 50,000 (95% confidence interval), with 16,000 as a point estimate. The number of cases experiencing adverse reactions has been reported to be 700 per 100,000 vaccinations. Currently, we see 16 serious side effects per 100,000 vaccinations, and the number of fatal side effects is at 4.11/100,000 vaccinations. For three deaths prevented by vaccination we have to accept two inflicted by vaccination.
Conclusions: This lack of clear benefit should cause governments to rethink their vaccination policy.
Keywords: SARS-CoV2; COVID-19; vaccination; mRNA-vaccine; number needed to vaccinate; safety; side effects; adverse drug reaction; fatal side effects; EMA
Full Article Text
- Introduction
- Methods
- Results
- Discussion
- Conclusions
- Author Contributions
- Funding
- Institutional Review Board Statement
- Informed Consent Statement
- Data Availability Statement
- Conflicts of Interest
- References
1. Introduction
2. Methods
3. Results
Table 3: click to enlarge |
Table 3. Individual case safety reports for the most widely distributed COVID-19 vaccines according to the Dutch side effects register, the absolute numbers per vaccine, and standardization per 100,000 vaccinations.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
REFERENCES
1) Arvay, C.G. Genetische Impfstoffe
gegen COVID-19: Hoffnung oder Risiko. Schweiz. Ärztezeitung 2020, 101,
862–864. [Google
Scholar]
2) Ramasamy, M.N.; Minassian, A.M.;
Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley,
P.K.; Angus, B.; Babbage, G.; et al. Safety and immunogenicity of ChAdOx1
nCoV-19 vaccine administered in a prime-boost regimen in young and old adults
(COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2020, 396,
1979–1993. [Google
Scholar] [CrossRef]
3) Walsh, E.E.; Frenck, R.W.; Falsey,
A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.;
Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based
COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383,
2439–2450. [Google
Scholar] [CrossRef]
[PubMed]
4) Polack, F.P.; Thomas, S.J.; Kitchin,
N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira,
E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19
Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google
Scholar] [CrossRef]
5) Baden, L.R.; El Sahly, H.M.; Essink,
B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.;
Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2
Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google
Scholar] [CrossRef]
6) Dagan, N.; Barda, N.; Kepten, E.;
Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer,
R.D. BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Mass Vaccination
Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google
Scholar] [CrossRef]
[PubMed]
7) Logunov, D.Y.; Dolzhikova, I.V.;
Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.;
Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety
and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost
COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial
in Russia. Lancet 2021, 397, 671–681. [Google
Scholar] [CrossRef]
8) Cunningham, A.S. Rapid response:
COVID-19 vaccine candidate is unimpressive: NNTV is around 256. BMJ 2020, 371,
m4347. [Google
Scholar]
9) Folegatti, P.M.; Ewer, K.J.; Aley,
P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.;
Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1
nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2,
single-blind, randomised controlled trial. Lancet 2020, 396,
467–478. [Google
Scholar] [CrossRef]
10) Klement, R.J.; Bandyopadhyay, P.S.
The Epistemology of a Positive SARS-CoV-2 Test. Acta Biotheor. 2020.
[Google
Scholar] [CrossRef]
11) Ioannidis, J.P.A.; Axfors, C.;
Contopoulos-Ioannidis, D.G. Population-level COVID-19 mortality risk for
non-elderly individuals overall and for non-elderly individuals without
underlying diseases in pandemic epicenters. Environ. Res. 2020, 188,
109890. [Google
Scholar] [CrossRef]
[PubMed]
12) Rose, J. A report on the U.S. vaccine
adverse events reporting system (VAERS) on the COVID-19 messenger ribonucleic
acid (mRNA) biologicals. Sci. Public Health Policy Law 2021, 2,
59–80. [Google
Scholar]
13) Edridge, A.W.; Kaczorowska, J.M.;
Hoste, A.C.; Bakker, M.; Klein, M.; Jebbink, M.F.; Matser, A.; Kinsella, C.;
Rueda, P.; Prins, M.; et al. Seasonal coronavirus protective immunity is
short-lasting. Nat. Med. 2020, 26, 1691–1693. [Google
Scholar] [CrossRef]
[PubMed]
14) Havers, F.P.; Reed, C.; Lim, T.;
Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang,
C.F.; Gibbons, A.; et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10
Sites in the United States, March 23–May 12, 2020. JAMA Intern. Med. 2020, 180,
1576–1586. [Google
Scholar] [CrossRef]
15) Mateus, J.; Grifoni, A.; Tarke, A.;
Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith,
D.M.; Phillips, E.; et al. Selective and cross-reactive SARS-CoV-2 T cell
epitopes in unexposed humans. Science 2020, 370, 89–94. [Google
Scholar] [CrossRef]
[PubMed]
16) Doshi, P. COVID-19: Do many people
have pre-existing immunity? BMJ 2020, 370, m3563. [Google
Scholar] [CrossRef]
17) Lavine, J.S.; Bjornstad, O.N.; Antia,
R. Immunological characteristics govern the transition of COVID-19 to
endemicity. Science 2021, 371, 741–745. [Google
Scholar] [CrossRef]
18) Brandal, L.T.; Ofitserova, T.S.;
Meijerink, H.; Rykkvin, R.; Lund, H.M.; Hungnes, O.; Greve-Isdahl, M.;
Bragstad, K.; Nygård, K.; Winje, B.A. Minimal transmission of SARS-CoV-2 from
paediatric COVID-19 cases in primary schools, Norway, August to November 2020. Eurosurveillance 2021, 26,
2002011. [Google
Scholar] [CrossRef]
[PubMed]
19) Ludvigsson, J.F.; Engerström, L.;
Nordenhäll, C.; Larsson, E. Open Schools, COVID-19, and Child and Teacher
Morbidity in Sweden. N. Engl. J. Med. 2021, 384, 669–671. [Google
Scholar] [CrossRef]
20) Lorent, D.; Nowak, R.; Roxo, C.;
Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak,
J.; Kierzek, R.; et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań,
Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9,
541. [Google
Scholar] [CrossRef]
[PubMed]
21) Ioannidis, J. The infection fatality
rate of COVID-19 inferred from seroprevalence data. Bull. World Health
Organ. 2021, 99, 19F–33F. [Google
Scholar] [CrossRef]
[PubMed]
22) Bendavid, E.; Mulaney, B.; Sood, N.;
Shah, S.; Ling, E.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.;
Saavedra-Walker, R.; Tedrow, J.; et al. COVID-19 Antibody Seroprevalence in
Santa Clara County, California. Int. J. Epidemiol. 2021, 50,
410–419. [Google
Scholar] [CrossRef]
23) Lei, Y.; Zhang, J.; Schiavon Cara,
R.; He, M.; Chen, L.; Shen, H.; Zhang, Y.; Yin, Q.; Cho, Y.; Andrade, L.; et
al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of
ACE 2. Circ. Res. 2021, 128, 1323–1326. [Google
Scholar] [CrossRef]
[PubMed]
24) Kowarz, E.; Krutzke, L.; Reis, J.;
Bracharz, S.; Kochanek, S.; Marschalek, R. “Vaccine-Induced COVID-19 Mimicry”
Syndrome: Splice reactions within the SARS-CoV-2 Spike open reading frame
result in Spike protein variants that may cause thromboembolic events in
patients immunized with vector-based vaccines (non-peer reviewed
preprint). Res. Sq. 2021. [Google
Scholar] [CrossRef]
25) Farsalinos, K.; Eliopoulos, E.;
Leonidas, D.D.; Papadopoulos, G.E.; Tzartos, S.; Poulas, K. Nicotinic
Cholinergic System and COVID-19: In Silico Identification of an Interaction
between SARS-CoV-2 and Nicotinic Receptors with Potential Therapeutic Targeting
Implications. Int. J. Mol. Sci. 2020, 21, 5807. [Google
Scholar] [CrossRef]
[PubMed]
26) Seneff, S.; Nigh, G. Worse than the
disease? Reviewing some possible unintended consequences of the mRNA vaccines
against COVID-19. Int. J. Vaccine Theory Pract. Res. 2021, 2,
38–79. [Google
Scholar]
27) Alatawi, Y.M.; Hansen, R.A. Empirical
estimation of under-reporting in the U.S. Food and Drug Administration Adverse
Event Reporting System (FAERS). Expert Opin. Drug Saf. 2017, 16,
761–767. [Google
Scholar] [CrossRef]
28) Moore, T.J.; Bennett, C.L.
Underreporting of Hemorrhagic and Thrombotic Complications of Pharmaceuticals
to the U.S. Food and Drug Administration: Empirical Findings for Warfarin,
Clopidogrel, Ticlopidine, and Thalidomide from the Southern Network on Adverse
Reactions (SONAR). Semin. Thromb. Hemost. 2012, 38, 905–907. [Google
Scholar] [CrossRef]
29) Hazell, L.; Shakri, S.A.W.
Under-reporting of adverse drug reactions. A systematic review. Drug Saf. 2006, 29,
385–396. [Google
Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Vaccines, EISSN 2076-393X, Published by MDPI Disclaimer
1)
0 Comments